From poshenloh.com
Po-Shen Loh | A cute proof that makes e natural
7 7
Po-Shen Loh is a social entrepreneur and inventor, working across the spectrum of mathematics, education, and healthcare, all around the world. He is a math professor at Carnegie Mellon University, and the national coach of the USA International Mathematical Olympiad team. He has pioneered...
#cute #math #humor #ngated #infinity #celebrity #poshenloh #irrational #ycombinator #hackernews
14h ago
From github.com
GitHub - mitmath/matrixcalc: MIT IAP short course: Matrix Calculus for Machine Learning and Beyond
2 2
MIT IAP short course: Matrix Calculus for Machine Learning and Beyond - mitmath/matrixcalc
on Feb 22
From youtube.com
1 1
Bekijk je favoriete video's, luister naar de muziek die je leuk vindt, upload originele content en deel alles met vrienden, familie en anderen op YouTube.
on Nov 27
From blenderdumbass.org
Gamedev Makes You Better at Math
1 1
When I started with Dani's Race I thought that the extend of my programming will be something like dynamically changing the speed of a car and maybe loading and unloading certain things on the map based on the distance from them. But quickly it became a mind-field of math and other programming...
#gnu #math #linux #upbge #python #gamedev #blender3d #danisrace #opensource #programming
on Feb 12
From github.io
Readings shared April 17, 2025
1 1
The readings shared in Bluesky on 17 April 2025 are Formalization of Fraïssé limits in Lean. ~ Gabin Kolly. #ITP #LeanProver #Math A readable and computable formalization of the Streamlet consensus p
#itp #agda #math #haskell #leanprover #isabellehol #functionalprogramming
3h ago
From github.io
Demostraciones de "f⁻¹[A ∪ B] = f⁻¹[A] ∪ f⁻¹[B]"
1 1
Demostrar con Lean4 y con Isabelle/HOL que \[f⁻¹[A ∪ B] = f⁻¹[A] ∪ f⁻¹[B]\] Para ello, completar la siguiente teoría de Lean4: import Mathlib.Data.Set.Function open Set variable {α β : Type _} varia
#math #calculemus #leanprover #isabellehol
3h ago
From github.io
Monotonía de la imagen inversa
1 1
Demostrar con Lean4 y con Isabelle/HOL que si \(u ⊆ v\), entonces \(f⁻¹[u] ⊆ f⁻¹[v]\). Para ello, completar la siguiente teoría de Lean4: import Mathlib.Data.Set.Function open Set variable {α β : Typ
#math #calculemus #leanprover #isabellehol
17h ago
From marketplace.org
Federal workers’ salaries represent less than 5% of federal spending and 1% of GDP
1 1
Cutting these jobs indiscriminately will “substantially damage the economy,” experts say.
20h ago